If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-29x+14=0
a = 15; b = -29; c = +14;
Δ = b2-4ac
Δ = -292-4·15·14
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-1}{2*15}=\frac{28}{30} =14/15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+1}{2*15}=\frac{30}{30} =1 $
| 15x^2+29x+14=0 | | 2x-3(-6x)=5 | | 15x^2=29x+14=0 | | b/4=2/10 | | 9/x=108/22 | | (2/3)x+11=4x-9 | | 3x*9=6x | | d=7=5d=15 | | 60+3x=4x+9 | | 6v-1-v=32 | | -3(v+4)=3v+4(v-3) | | 5n+7n=0 | | 2x-28x+98=0 | | 2(3y+1)=2 | | 57=-2s=8 | | 12x+3(-2.5x+2)=6 | | -7a+7a=-5 | | 3x+2=6x+10 | | 10x+4(-4x-2)=8 | | 10x-1=-5(5-5x)-3(-8+5x) | | 2k+12=4- | | X-31=6x-406 | | 20d=740 | | 3p+p+42=180 | | √3x^2+9x+-2/5=0 | | 3p-42=180 | | -7a=71=-5 | | -11v=825 | | -91=7(1+2k) | | 2x+7+3x=-28 | | -4(6x7)=4x | | -10(-2x)=-80 |